
QUESTÃO **1**

Aparelhos eletrônicos sem fio, tais como máquinas fotográficas digitais e telefones celulares, utilizam, como fonte de energia, baterias recarregáveis. Um tipo comum de bateria recarregável é a bateria de níquel-cádmio, que fornece uma d.d.p. padrão de 1,25 V e cujos componentes apresentam baixa solubilidade em água.

A ilustração abaixo representa uma dessas baterias.

Admita que:

- a reação global desta bateria seja representada pela equação Cd + 2 NiOOH + 2 H₂O ← Cd(OH)₂ + 2 Ni(OH)₂ ;
- a semi-reação de oxidação apresente um potencial igual a 0,76 V e que seja representada pela equação Cd + 2 OH⁻ → Cd(OH)₂ + 2e⁻.
- A) Escreva a equação que representa a semi-reação de redução e seu respectivo potencial padrão.
- B) Sabendo que o produto de solubilidade do hidróxido de cádmio vale $3.2 \times 10^{-14} \text{ mol}^3 \times \text{L}^{-3}$ a 25°C , determine sua solubilidade, em mol $\times \text{L}^{-1}$, nessa temperatura.

QUESTÃO **02**

O ácido barbitúrico e seus derivados são indicados como tranqüilizantes para reduzir a ansiedade e induzir o sono. A síntese desse ácido pode ser resumida pela seguinte equação:

- A) Identifique a função orgânica presente no ácido barbitúrico e apresente a estrutura em bastão do ácido carboxílico derivado do malonato de etila.
- B) Com base nos valores de eletronegatividade indicados na tabela de classificação periódica, determine os números de oxidação dos átomos de carbono indicados por 1 e 2 na molécula do ácido barbitúrico.

QUESTÃO **O3**

Mudanças de estado físico e reações químicas são transformações que produzem variações de energia. As equações termoquímicas a seguir exemplificam algumas dessas transformações e suas correspondentes variações de energia ocorridas a 25°C e 1 atm.

$$I \qquad H_2O_{(\ell)} \longrightarrow H_2O_{(v)} \qquad \Delta H = 44,0 \text{ kJ} \times \text{mol}^{-1}$$

$$II \qquad C_2H_5OH_{(\ell)} \longrightarrow C_2H_5OH_{(v)} \qquad \Delta H = 42,6 \text{ kJ} \times \text{mol}^{-1}$$

$$III \qquad C_2H_5OH_{(\ell)} + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(\ell)} \qquad \Delta H = -x \text{ kJ} \times \text{mol}^{-1}$$

$$IV \qquad C_2H_5OH_{(v)} + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(v)} \qquad \Delta H = -y \text{ kJ} \times \text{mol}^{-1}$$

- A) Classifique a equação I quanto ao aspecto termoquímico e identifique o tipo de ligação intermolecular rompida na transformação exemplificada pela equação II.
- B) Com base na Lei de Hess, calcule a diferença numérica entre a quantidade de calor liberada pela reação III e a quantidade de calor liberada pela reação IV.

QUESTÃO **04**

O clássico processo Haber de produção de amônia, cujo rendimento é de 80% em condições ótimas, está representado na equação abaixo.

$$\left(N_{2(g)} + 3 H_{2(g)} \longrightarrow 2 NH_{3(g)} \quad \Delta H < 0\right)$$

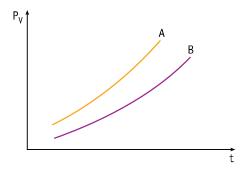
A equação a seguir representa um processo alternativo de produção de amônia, que tem como reagentes gás natural, vapor d'água e ar atmosférico. O rendimento deste processo é de 20% em condições ótimas.

$$7 CH_{4(g)} + 10 H_2O_{(v)} + 8 N_{2(g)} + 2 O_{2(g)} \longrightarrow 16 NH_{3(g)} + 7 CO_{2(g)} \Delta H < 0$$

Admita comportamento ideal dos gases e vapores envolvidos.

- A) Considerando um mesmo volume de nitrogênio, calcule a razão entre os volumes de amônia gasosa produzidos pelo processo Haber e pelo processo alternativo, ambos em condições ótimas.
- B) Os dois processos apresentam baixíssimas velocidades de conversão a 25°C. Para aumentar essas velocidades, a temperatura deverá ser alterada.

Indique o tipo de alteração necessário e seu efeito sobre o rendimento de ambos os processos.


QUESTÃO **05**

Para evitar alterações nas células sangüíneas, como a hemólise, as soluções utilizadas em alimentação endovenosa devem apresentar concentrações compatíveis com a pressão osmótica do sangue.

Foram administradas a um paciente, por via endovenosa, em diferentes períodos, duas soluções aquosas, uma de glicose e outra de cloreto de sódio, ambas com concentração igual a $0.31 \text{ mol} \times L^{-1}$ a 27° C.

Considere que:

- a pressão osmótica do sangue, a 27°C, é igual a 7,62 atm;
- a solução de glicose apresenta comportamento ideal;
- o cloreto de sódio encontra-se 100% dissociado.
- A) Calcule a pressão osmótica da solução de glicose e indique a classificação dessa solução em relação à pressão osmótica do sangue.
- B) As curvas de pressão de vapor (P_v) em função da temperatura (t) para as soluções de glicose e de cloreto de sódio são apresentadas no gráfico a seguir.

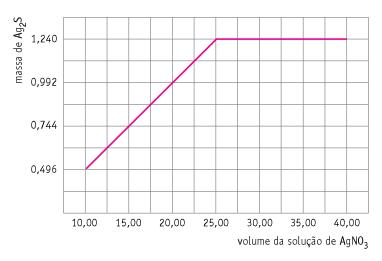
Aponte a curva correspondente à solução de glicose e justifique sua resposta.

QUESTÃO **06**

Na avaliação da qualidade do ar atmosférico, um dos testes realizados é a determinação da quantidade de CO₂. Esse teste consiste na passagem de certo volume de ar por uma solução de hidróxido de cálcio, de forma que todo o CO₂ presente seja convertido em carbonato de cálcio insolúvel.

Sabe-se que o ${\rm CO_2}$ reage com a água produzindo ácido carbônico, cuja ionização ocorre em duas etapas e diminui o pH da água.

- A) Escreva a equação química completa e balanceada que representa a reação do gás carbônico com o hidróxido de cálcio e apresente uma fórmula estrutural plana do ânion carbonato.
- B) Certa amostra de água apresenta concentração de CO_2 dissolvido igual a 2.3×10^{-2} mol \times L $^{-1}$. Admita que:
 - 1,0 % do CO₂ dissolvido seja convertido em ácido carbônico;
 - apenas a primeira etapa de ionização desse ácido influencie o pH da água;
 - a constante da primeira etapa tenha valor igual a 4.4×10^{-7} mol \times L⁻¹.


Determine o valor aproximado do pH dessa amostra de água.

A equação balanceada a seguir representa a reação de dupla-troca entre o nitrato de prata e o sulfeto de sódio, na qual é formado o sal insolúvel sulfeto de prata.

$$\left(2 \text{ AgNO}_{3(aq)} + \text{Na}_2 \text{S}_{(aq)} \longrightarrow \text{Ag}_2 \text{S}_{(s)} + 2 \text{ NaNO}_{3(aq)} \right)$$

Um experimento sobre análise quantitativa consistiu em gotejar uma solução de AgNO₃ sobre uma solução de Na₂S, mantendo agitação constante.

O volume da solução de AgNO₃ gotejado, em mililitros, e a massa de Ag₂S obtida, em gramas, foram registrados no gráfico abaixo.

- A) Calcule a concentração da solução de $AgNO_3$, em $mol \times L^{-1}$.
- B) Indique o caráter da solução de sulfeto de sódio em relação a seu pH e escreva uma equação química que comprova esse caráter.

QUESTÃO **08**

Os alcenos, ao sofrerem reação de oxidação enérgica com solução de permanganato de potássio, aquecida e acidulada, produzem diferentes compostos de carbono, como gás carbônico, cetonas e ácidos carboxílicos. Analisando os produtos dessa reação, pode-se identificar o alceno reagente e determinar a posição de sua insaturação.

Considere que a oxidação de 3,50g de um alceno tenha produzido uma cetona e 1,12 L de gás carbônico, medidos nas CNTP.

Em relação ao alceno reagente,

- A) classifique seus átomos de carbono insaturados como primário, secundário ou terciário;
- B) apresente sua fórmula estrutural plana e indique o nome oficial do aldeído de cadeia normal isômero da cetona produzida.

QUESTÃO **09**

O polímero denominado KEVLAR apresenta grande resistência a impactos. Essa propriedade faz com que seja utilizado em coletes à prova de balas e em blindagem de automóveis.

Observe sua estrutura.

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ &$$

A reação química de obtenção desse polímero tem como reagentes dois monômeros, um deles de caráter ácido e outro de caráter básico.

- A) Indique a classificação dessa reação de polimerização.
- B) Considerando o monômero de caráter básico, apresente uma equação química completa que demonstre esse caráter na reação com o ácido clorídrico.

QUESTÃO **10**

As máscaras de respiração, utilizadas por bombeiros em situações de emergência, contêm superóxido de potássio. Essa substância reage com a umidade do ar expirado pelo usuário da máscara, conforme a equação abaixo.

$$\left(4 \text{ KO}_{2(s)} + 2 \text{ H}_2 \text{O}_{(v)} \longrightarrow 4 \text{ KOH}_{(s)} + 3 \text{ O}_{2(g)}\right)$$

- A) Considere as seguintes condições de uso de uma dessas máscaras:
 - comportamento ideal dos gases e vapores envolvidos;
 - funcionamento em sistema fechado, ou seja, sem trocas gasosas com a atmosfera;
 - volume de ar respirado igual a 41,0 L por minuto;
 - concentração de umidade no ar expirado iqual a 6,2% volume por volume, a 37℃ e 1 atm de pressão;
 - consumo total da umidade contida no ar expirado.

Calcule o tempo máximo de uso, em minutos, de uma máscara que contenha 213 q de superóxido de potássio.

B) Além do superóxido de potássio, o potássio forma dois outros compostos binários oxigenados que não satisfazem os requisitos para uso em máscaras.

Indique as fórmulas desses compostos.

					CI	_ASSII	FICAÇ.	ÃO PE	ERIÓD	OICA I	OOS E	LEME	NTO	S			
					(A	daptac	lo da S	ocieda	de Bra	sileira	de Qu	ímica -	1999))			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
IA																	VIII A
2,1 H	IIA											III A	IV A	VA	VIA	VIIA	² He
1 1,0		1										5 2.0					4
Li	Be											B B	6 2,5 C	7 3,0 N	8 3.5 O	F F	Ne
7	9											11	12	14	16	19	20
	12 1,2	1										13 1,5			1 —	17 3,0	1 .
Na	Mg 24	III B	IV B	VB	VI B	VII B	VIII	VIII	VIII	ΙB	IIΒ	AI 27	Si 28	P 31	S 32	CI 35.5	Ar 40
												31 1,6					1
K	Ca	Sc 45	Ti	V 51	Cr 52	Mn 55	Fe 56	Co 59	Ni 58.5	Cu 63.5	Zn 65.5	Ga 70	Ge 72.5	As	Se 79	Br 80	Kr 84
0,8	38 1,0	39 1,2	40 1,4					45 2,2	46 2,2		48 1,7	49 1,7	50 1,8	51 1,9		53 2,5	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85,5 0,7	87,5 56 0,9	89 57-71	72 1,3	73 1,5	74 1,7	75 1,9	76 2,2	77 2,2	78 2,2	79 2,4	80 1,9	115 81 1,8	119 82 1,8	83 1,9	127,5 84 2,0	127 85 2,2	131
Cs	Ва	lantanídios	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
133	137 88 0,9	89-103	178,5 104	181 105	184 106	186 107	190 108	192 109	195 110	197 111	200,5 112	204	207	209	[209]	[210]	[222]
Fr [223]	Ra [226]	actinídios	Rf [261]	Db 262	Sg [263]	Bh [262]	Hs [265]	Mt [268]	Uun [269]	Uuu [272]	Uub [277]						
ÚMERO	ELETRONE-	s	57	58 1,1	59 1,1	60 1,1	61 1,1	62 1,2	63 1,2	64 1,2	65 1,2	2 66 1,2	67 1,2	68 1,2	69 1,2	70 1,2	71
ÔMICO	GATIVIDADE	lantanídios	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
ÍME	BOLO		139 89	140 90 1,3	141 91 1,5	144 92 1,7	[145] 93 1.3	150 94 1.3	152 95 1.3	157 96	159 97 1,3	162,5 98 1,3	165 99 1,3	167 100 1,3	169 101 1.3	173 102 1,3	175 103
		actinídios	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Constante universal dos gases ideais: $R=0.082~atm\times L\times mol^{-1}\times K^{-1}$

Volume molar dos gases ideais, nas CNTP=22,4 $L \times mol^{-1}$